
Dynamic Distributed Intrusion Detection

for Secure Multi–Robot Systems

Adriano Fagiolini, Francesco Babboni, and Antonio Bicchi

Abstract— A general technique to build a dynamic and
distributed intrusion detector for a class of multi–agent systems
is proposed in this paper, by which misbehavior in the motion
of one or more agents can be discovered. Previous work from
the authors has focused on how to distinguish the behavior
of a misbehaving agent in a completely distributed way, by
developing a solution where agents act as local monitors of
their neighbors and use locally sensed information as well
as data received from other monitors at a particular time.
In this work, we improve the system detection capability by
allowing monitors to use information collected at different
instants and thus realizing a dynamic state observer that is
valid for any system in the considered class. Finally, we show
through simulations the effectiveness of the proposed solution
for a case study.

I. INTRODUCTION

In the last decades, robotics has undergone a gradual

yet constant migration of research interests from monolithic

systems with a unique robot to distributed multi–agents com-

posed of several semi–autonomous robots. A similar course

happened earlier in computer science, where distributed

algorithms were developed to provide better solutions for

classical decision problems [1], [2]. Such multi–agents are

normally meant to be used in application scenarios that lack

of a centralized infrastructure, and where agents are not

secured from malicious intervention. It is then reasonable to

expect that one or more of these agents might be tampered,

hijacked, or entered into the system as e.g. to degrade its

QoS, or to compromise its safety. The term intruders will be

used to denote these malicious agents that are not just faulty

systems, in the same way malicious software is commonly

denoted in computer science [3], [4]. As a matter of fact,

the actual achievement of the system goal is theoretically

guaranteed only under the hypothesis that all agents harmo-

niously act and cooperate [5]. This motivates the emerging

interest toward techniques that robustify existing multi–agent

systems by detecting the presence of intruders in various

different settings [6]–[9].

In this context, we consider a class of multi–agent systems,

where agent cooperation is obtained by sharing a set of rules.

More precisely, we assume that agents are assigned with

different tasks that require their motion within a shared phys-

ical environment, but they are also supposed to cooperate as

to guarantee a given desirable system property. We further

assume that cooperation rules are encoded as decentralized

A. Fagiolini, F. Babboni, and A. Bicchi are with the
Interdepartmental Research Center “E. Piaggio” of the Uni-
versità di Pisa, Italy, a.fagiolini@ing.unipi.it,
francesco.babboni@gmail.com,
bicchi@ing.unipi.it.

logical conditions, i.e. each agent plans its motion based on

its own state, and on logical conditions on the state of only

other agents in a suitable neighborhood. We have shown that

this class of systems has a hybrid dynamics [6], [10]. Our

aim is to provide a general technique that allows an Intrusion

Detection System (IDS) to be automatically designed and

built so as to discover motion misbehavior of any agent. We

require the technique to be applicable for any system in the

considered class, and to be distributed due to the absence of

a centralized infrastructure.

In previous work, we have already investigated the prob-

lem and partially solved it. First, we proposed a distributed

solution where each agent monitors all the other agents that

lie within a safety region from it and tries to classify their

behavior by using only its own sensors [6]. In particular,

the hybrid model of a given target agent can be “inverted”

by associating the above mentioned logical conditions to the

set of configurations where these conditions are satisfied.

Then, by measuring two consecutive states of the target

agent’s motion, estimates of its neighbors can be statically

computed, consisting of continuous sets. In [11], we pro-

posed an implementation of such a local monitor that can be

run irrespectivly of the current neighborhood of the target

agent, and of the visibility condition of the monitor itself. In

particular, we assumed ideal sensors that can precisely read

the state of every agent laying within a maximum distance

and that are not hidden by other agents.

The detection capability of this base local monitor and

hence of the underlying IDS can be improved by proceeding

toward two different directions. On the one hand, we investi-

gated whether and how monitor communication can be used,

and we have developed a set–valued consensus protocol

by running which agents can reach an agreement on the

cooperation or uncooperation of a common neighbor [10].

Such a monitor agreement is a mandatory step before starting

any emergency and escape maneuver. Furthermore, in such

malicious scenarios, it is reasonable to assume that some

monitors may send false information either to justify their

incorrect behaviors or blame other cooperative agents. In

[12], we showed that each local monitor can be supported by

a distributed message validation mechanism that allows any

false data to be discarded based on measurement redundancy.

On the other hand, another improving direction aims at

providing each local monitor with the ability to dynamically

estimate the state of all neighbors of the target agent, which

is the subject of the present work. In this vein, we will

show that the dynamic version of the intrusion detection

problem can be solved as soon as tools are available for

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

978-1-4244-2789-5/09/$25.00 ©2009 IEEE 2723

Authorized licensed use limited to: Univ degli Studi di Palermo - Univ of Palermo. Downloaded on February 07,2022 at 06:25:49 UTC from IEEE Xplore. Restrictions apply.

the observability computation of any system in the con-

sidered class. To this aim, we focused on the flourishing

literature on hybrid systems. During the last 15 years, this

research community has intensively studied may aspects of

such systems. Reachability computation is at present one

of the most investigated properties for these systems, and

indeed various significant results are available for linear

systems [13], affine systems [14], and some other classes of

systems [15]–[18]. More recently developed is the literature

on the dual problem of observability computation for hybrid

systems. Very useful works are already available such as

[19]–[22]. However, it is true that the literature is missing

of a general result that remains valid for any system in

a wide class. In this vein, we would like to adopt an

approach similar to e.g. the one in [23], where a general

framework, ARIADNE, allows reachability computation for

a wide class of systems. More precisely, we aim at presenting

a general procedure to state estimation for any system in

the considered class. In our case, the fact that we have set–

valued measurements makes the problem more difficult and

yet very challenging [24]. The main contributions of the

present work are indeed the following two. We first show

that the dynamic intrusion detection problem is reducible to

observability computation for hybrid systems, and then we

provide the general framework of an algorithm for doing this.

II. PROBLEM STATEMENT

We consider robotic applications requiring motion coor-

dination in a set of n agents, A1, . . . ,An. More precisely,

considered agents are robots running pre–assigned tasks that

require them to move within a common physical environ-

ment, or world W . Every robot is described by a vector

qi belonging to a configuration space Q. Then, given a

desirable system property, as e.g. the ability to avoid agent

collisions, or dead– and live–locks, we assume that a suitable

coordination strategy has been designed and encoded into

a set R of decentralized logical rules to which agents are

supposed to adhere during their motion. According to the

set of rules R, agents can perform at any instant t one

of κ actions, or motion maneuvers, Σ = {σ1, σ2, . . . , σκ},

and has to change from a current maneuver to another

one whenever one of a set of ν logical conditions, or

events, E = {e1, e2, . . . , eν} depending on a suitable agent’s

neighborhood, called influence set, Ii(t) occurs. Then, from

a logical point of view, each agent Ai is also assigned with

a discrete variable σi(t) ∈ Σ that represents its current

maneuver. In [6], [10], we have shown that these types of

systems, where agents have a physical dynamics, but interact

according to event–based cooperation rule sets R, can be

modeled as hybrid systems :

q̇i(t) = H(qi(t), Ii(t)) , (1)

where H : Q × Qp → TQ, TQ is the space tangent

to Q, Ii(t) = {qi1(t), . . . , qip
(t)}, and i1, . . . , ip are the

indices of agents in Ii(t). Under this view, we will consider

qi1(t), . . . , qip
(t) as inputs of model H and qi(t) as its

Fig. 1. Partition of the influence set I4(t) of agent A4 w.r.t. agent A0’s
visibility V(q0(t), I4(t)).

output. An agent that follows the cooperation rules R is said

to be R–compliant.

As stated above, to achieve the system’s goal and guaran-

tee the desired system property all agents must adhere to the

cooperation rule set R. Therefore, it is essential to be able

to detect and isolate any uncooperative agent. Our approach

to solve the problem requires that each agent participate in

the intrusion detection function. However, this poses some

difficulty since agents know only partially a target agent’s

input, as they have limited line–of–sight visibility. Indeed,

the challenge of a robot acting as a decentralized monitor is

to distinguish a faulty or malicious robot in its neighborhood

from a correctly cooperating robot whose actions may be

influenced by other robots out of the monitor’s range. We

conveniently can introduce a visibility map V(qh, Ii) as

a nonlinear function that, given the configuration of the

monitoring agent Ah, returns the configurations in Ii that

can be “seen” from the agent itself. Then, the influence set

Ii(t) of agent Ai can be partitioned w.r.t. Ah into a known

region Iobs
i (t) and an unknown one Iunobs

i (t) (see e.g. Fig

1). Indeed we have:

Ii(t) = Iobs
i (t) ∪ Iunobs

i (t) . (2)

In this vein, previous work has addressed the following:

Problem 1: Given agent Ai’s (hybrid) motion model

H, the partition of its influence set Ii(t) in Eq. 2

w.r.t. agent Ah’s visibility Vh, and no configurations

qi1(t)h, . . . , qin0
(t)

h
∈ Iobs

i (t) of known neighbors of agent

Ai, determine, if it exists, a choice of p− no configurations

q̂ino+1
(t), . . . , q̂ip

(t) ∈ Iunobs
i (t) such that the expected

motion

q̃i(t) = qi(tk) +
∫ t

tk
H(qi(τ), qi1(τ), . . . ,

qin0
(τ), q̂in0+1

(τ), . . . , q̂ip
(τ)) dτ ,

equals the measure one, i.e. q̃i(t) = qi(t) for all t ∈ Tk.

Solving this problem is in general a hard task due to the

nonlinear and differential nature of the motion model H. It

basically requires that an unknown input observer (UIO) H†

of the hybrid model is built. Furthermore, a direct approach

for the computation of such a UIO leads to find ad–hoc

solutions for specific cases. However, we showed in [6],

[10], [11] how this can be avoided for the considered class

of robotic multi–agent systems. The reader may assume the

existence of a systematic procedure to build a UIO, H†, s.t.

(q̂ino+1
(t), ..., q̂ip

(t)) = H†(qi(t), qi1(t), .., qin0
(t)) , (3)

where q̂im
(t) for m = no + 1, . . . , p are continuous sets

estimating configurations of agents in Iunobs
i (t) that can

explain the validated motion qi(t) of agent Ai.

2724

Authorized licensed use limited to: Univ degli Studi di Palermo - Univ of Palermo. Downloaded on February 07,2022 at 06:25:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. State observability with set–valued measurement.

By using this mechanism, agent Ah may decide on the

cooperativeness bhi of agent Ai: as long as a choice for q̂l

exists, agent Ai can be considered as possibly cooperative

or uncertain (as a matter of fact, Ai can not verify the

correctness of these estimates), but if no values for these

estimates exist, agent Ai is considered as uncooperative.

In this work, we want to extend the capability of this static

local monitor. To this aim, we consider the following:

Problem 2: Given a set of n agents with continuous dy-

namics f , and a set R of cooperation rules, find an automatic

synthesis procedure to build a local monitor that is able to

dynamically detect motion misbehavior of some neighboring

agents, by using measures taken at different times.

III. PREDICTION/CORRECTION SCHEME FOR DYNAMIC

STATE ESTIMATION WITH SET–VALUED MEASURES

In this section we describe the mechanism that allows a

generic agent Ah to dynamically estimate the current state ξi

of the neighborhood Ii of agent Ai. At a generic observation

instant tk, the instantaneous estimate of ξi is:

ξi = {qi, qi1 , . . . , qino
, q̂ino+1

, . . . , q̂ip
} (4)

where qi1 , . . . , qino
are the configurations of visible agents,

and q̂ino+1
, . . . , q̂ip

are configurations of other agents recon-

structed by the UIO of Eq. 3. Note that its components are

polyhedral sets representing possible configuration of Ai’s

neighbors. Then, Problem 2 involves finding a solution to

the following one:

Problem 3 (Set–Valued State Estimation): Given a se-

quence of κ estimates, ξi(t0), . . . , ξi(tκ), taken at successive

times, find the smallest set ξ∗(tk) of all points that are R–

compliant, i.e. the set of points q̄i ∈ ξi(tκ) for which there

exists a chain of points, q̄i(t0), . . . , q̄i(tκ−1) s.t.

q̄i(t1) = φH(q̄i(t0)) ,
q̄i(t2) = φH(q̄i(t1)) ,
...

q̄i(tκ) = φH(q̄i(tκ−1)) ,

where φH(·) is the solution of the ordinary differential

equation in Eq. 1. (see Fig. 2 and recall chain–rechability

from [17]).

Let us first present a general procedure by which an

estimate of the current neighborhood state can be iteratively

computed (see Algorithm 1). This estimate is updated as

soon as new measurements of agent Ai’s neighborhood

are available. The essence of the algorithm consists of a

prediction/correction step: at line 13, a forward projection

Proj(ξi(k − 1)) of the latest estimate is combined with the

new measurement Ui(k) by set–intersection.

Algorithm 1 is based on the availability of operator Proj

that computes a forward–projection of the continuous input

set, according to the hybrid model H. An implementation

of the set projector Proj would solve Problem 3, but its

implementation can be easily found only for linear systems.

This is not shown here for space limitation and leverages

on the fact that, in the linear setting, exact system solution

is known, and polyhedral sets map to other polyhedral sets.

The fact that, for a generic nonlinear system, a closed form

of the system evolution is unknown can be overcome by

numerical integration. However, the problem with nonlinear

ordinary differential equations (ODE) is that convex sets map

to complicated geometric shapes. Furthermore, starting by

a connected set, the nonlinear system flow may produce

“holes” inside the set [25]. It is worth noting that this

problem does not arise in reachability computation, where

it is sufficient to determine if a point is eventually reached.

Then, in our case, the evolutions of all points in the original

set are to be “tracked”. Due to the difficulty in processing

an infinite number of points, we reduces to compute conser-

vative approximations of the state estimate. We first give the

following:

Definition 1: Given a set ξ, an ε–overapproximation of ξ
is a set ξε of points such that:

• ξ ⊆ ξε, and

• for all qε ∈ ξε, there exists a point q ∈ ξ s.t.

‖q − qε‖ ≤ ε ,

where || · || is the Haussdorf norm.

Then, we want to solve the following:

Problem 4 (ε–observability): Under the hypotheses of

Problem 3, find an ε–overapproximation of the ξ∗(tk).
Let us first recall the following:

Definition 2 (Lipschitz function): A real–valued function

f defined on a subset K of the real numbers f : K ⊆ R → R

is called Lipschitz continuous, or is said to satisfy a Lipschitz

condition if there exists a constant L ≥ 0 such that for all

x1, x2 ∈ D

‖f(x1) − f(x2)‖ ≤ L‖x1 − x2‖.
A general implementation of operator Proj can then be ob-

tained as follows (see Algorithm 2). The algorithm receives

as input the current state ξ and produces the predicted state

ξ+. It proceeds by considering a grid of points, ξgrid, with

a suitable mesh size µ ∈ R. By the Fundamental Inequality

Theorem [26], a Lipschitz system always admits a conser-

vative mesh size µ for which an ε–overapproximation of its

trajectories can be computed. Indeed, given a generic initial

system configuration q(0) and another initial configuration

q̄(0), such that

‖q(0) − q̄(0)‖ ≤ µ ,

2725

Authorized licensed use limited to: Univ degli Studi di Palermo - Univ of Palermo. Downloaded on February 07,2022 at 06:25:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Prediction/correction scheme of a dynamic state estimator.

then, for any sampling time T , it holds:

‖q(T) − q̄(T)‖ ≤ µ eL T ,

Thus, the choice µ = ε/eL T guarantees that a ball centered

at q(T) with radius ε includes all system trajectories starting

from points lying within a maximum distance µ from qi(0).
Indeed we trivially have ‖q(T) − q̄(T)‖ ≤ ε. Therefore, to

realize the Proj operator, it is sufficient to compute a forward

projection of all points in the original grid (see line 4), and

then to enlarge these points by a sufficiently large ball (lines

5–8). The radius of the ball can be computed based on the

local value of the Lipschitz constant. This reminds the idea of

lifting faces of a polyhedra by local behavior of the system

[15]. These balls are iteratively added to the predicted set

ξ+.

The algorithm is complete, i.e. its finite–time termination

can be guaranteed due to the Lipschitz condition. Finally,

the complete scheme of the dynamic monitor is depicted

in Fig. 3. It is worth noting that this approach requires

some computational effort, but its applicability to set–valued

observation is quite wide. The only requirement is on the

Lipschitz condition of the system. Hence, we believe that

this work goes into the same direction of other tools as

e.g. ARIADNE, and it can be used to realize an intrusion

detection system for a large class of dynamical systems.

IV. APPLICATION

A. An Automated Highway

Consider n mobile agents that are traveling along a

highway with different maximum speed and different final

positions. Agents are supposed to cooperate according to the

common driving rules in order to avoid collisions. Informally,

the rule set is R = {r1, r2, r3, r4}, where:

Algorithm 1 Dynamic Monitor

Inputs: H, ε.

Outputs: Cooperativeness bi, Estimated neighborhood ξi.

1: for all times k = 1, 2, . . . do

2: Compute Nh = {q1, q2, . . . } = getEnvironment() ⊳

get all visible agents

3: for all new agents qi ∈ Nh do

4: ξi(k − 1) = Qp
⊳ initialize neighborhood’s state

5: end for

6: for all agents qi ∈ Nh do

7: bi = D(ξi(k)) ⊳ determine agents’ cooperativeness

8: Compute {qi1 , . . . , qino
} = neighbors(qi,Nh)

9: Set Iobs
i = {qi1 , . . . , qino

}
10: Compute {q̂ino+1

, . . . , q̂ip
} = uio(qi, I

obs
i)

11: Set Iunobs
i = {q̂ino+1

, . . . , q̂ip
}

12: Set Ui(k) = {qi, I
obs
i , Iunobs

i }
13: Set ξi(k) = Proj(ξi(k − 1),H, ε, T) ∩ Ui(k)
14: end for

15: end for

16: Simplify ξ+

Algorithm 2 ε–overapproximation of set forward projection

Inputs: ξ, H, ε, T .

Outputs: Projected set ξ+.

1: ξgrid = grid(ξ, ε)
2: ξ+ = ∅ ⊳ generate grid points

3: for all points qi ∈ ξgrid do

4: q+

i = integrate(H, qi, T) ⊳ compute forward projection of

qi by numerical integration

5: σi = D(qi) ⊳ compute current maneuver

6: L = lipschitz(qi, σi) ⊳ compute local estimate of system’s

Lipschitz constant

7: µ = ε/eL T

8: q̂+

i = ball(q+

i , µ) ⊳ compute point overapproximation

9: Add q̂+

i to ξ+.

10: end for

• r1

def

= “proceed at the maximum speed along the right-

most free lane when possible (fast maneuver)”;

• r2

def

= “if a slower vehicle proceeds in front on the same

lane, then overtake the vehicle if the next lane on the

left is free (left maneuver), or reduce the speed (slow
maneuver) otherwise”;

• r3

def

= “as soon as the next lane on the right becomes

free, change to that lane (right maneuver)”;

• r4

def

= “overtaking any vehicle on the right is forbidden”.

The generic agent chooses one of these maneuvers based

on events on its neighborhood. Agent Ai’s configuration is

qi(t) = (xi(t), yi(t), θi(t), vi(t)) and has the continuous–

time unicycle–like dynamics f :

ẋi(t) = vi(t) cos(θi(t)) ,
ẏi(t) = vi(t) sin(θi(t)) ,

θ̇i(t) = ωi(t) ,
v̇i(t) = ai(t) ,

2726

Authorized licensed use limited to: Univ degli Studi di Palermo - Univ of Palermo. Downloaded on February 07,2022 at 06:25:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Initial configuration of the simulation run, and initial visibility
condition of monitoring robot 0 (robots 2 and 3 are hidden).

where ai(t) and ωi(t) are linear acceleration and angular

velocities, respectively. According to the set R, the maneuver

σi(t) of the i–th robot may take value on the set Σ =
{fast, left, right, slow}. The dynamics of the agent maneuver

is omitted here for the sake of space, but can be found in

[10].

B. Detection of misbehaving vehicles

In this section, we first want to show that the dy-

namic monitor is indeed able to provide better state es-

timation of the neighborhood of a given agent, and then

we show that it is able to discover motion misbehav-

iors that were undetectable with the static monitor pro-

posed in [6], [10]. The reader may refer to the site

http : //www.piaggio.ccii.unipi.it/˜fagiolini/icra2009 for

the complete simulation run.

To this aim, consider a simulation run with 4 vehicles,

where robot 0 is a vehicle that is monitoring robot 1 (see Fig.

4). In the first part of the simulation, robot 1 is following

the cooperation rules R. Thus, it will remain in the right–

most lane and perform a fast maneuver as long as robot 2
is sufficiently far. This happens until simulation step t =
69. During this time, monitoring robot 0 will estimate the

absence of a vehicle in front of robot 1 (green region in

Fig. 5–a). At simulation step t = 70, robot 1 will correctly

start overtaking robot 2 (its maneuver changes, from fast to

left). The static monitor presented in [10] will estimate the

presence of a vehicle in front of vehicle 1 (red region in

Fig. 5–b), but it will “forget” the information collected at

the previous instant. On the contrary, the dynamic monitor

will be able to compute a projection of the green region

estimated at t = 69 and then will intersecting with the red

region estimated at t = 70 (see Algorithm 1 and 2). A

better estimation (narrower red region) of the neighborhood

of robot 1 can be found in this way (see Fig. 6).

As the simulation continues, robot 1 approches the second

lane and then robot 3 becomes hidden. In the meanwhile,

robot 2 becomes visible since it is not anymore hidden by

robot 1. At simulation time t = 89, monitoring robot 0 has

estimated two projected red regions (Fig. 7): the lower one is

verified by robot 2, whereas the upper one is a projection of

Fig. 5. Estimation of robot 1’s neighborhood made by a static monitor
embedded on robot 0.

Fig. 6. Estimation of robot 1’s neighborhood made by a dynamic monitor
embedded on robot 0. The projection of a green region detected at time
t = 69 is intersected with a red region detected at t = 70.

the last measured configuration of robot 3 that has become

hidden. Until this time, robot 1 has correctly following

the cooperation rules R, and the monitoring process has

confirmed this.

Suppose that robot 1 starts from now to misbehave by not

respecting the safety distance from the preceding robot 3.

As it can be seen in Fig. 8–a, monitoring robot 0 detects a

green region representing a free portion of the second lane,

due to robot 1’s behavior. At the same time, it will continue

to estimate the configuration of robot 3. Due to the fact

that robot 3 has a lower maximum speed, the red region

representing its possible configuration will be completely

included into a green region at t = 153 (8–b). At this time

the hypothesis of a green region in front of robot 1 becomes

inconsistent with the presence of robot 3, and robot 1 can

be deemed as uncooperative. Again, this misbehavior would

have not been discovered by a static monitor, since it was

not able to compute an estimation of robot 3’s configuration.

V. CONCLUSION

The definition of a general technique to build a dynamic

and distributed intrusion detector for a class of multi–agent

systems was proposed in this work. A completely distributed

algorithm was proposed in previous work, whereas in this pa-

per the system detection capability is improved by allowing

2727

Authorized licensed use limited to: Univ degli Studi di Palermo - Univ of Palermo. Downloaded on February 07,2022 at 06:25:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Monitoring robot 0 has estimated two projected red regions: the
lower is verified by robot 2, whereas the upper one is a projection of the
last measured configuration of robot 3 that has become hidden.

(a)

(b)

Fig. 8. Monitoring robot 0 detects a green region representing a free
portion of the second lane, due to robot 1’s behavior, but also a red region
due to robot 3. When the two regions become inconsistent robot 1 can be
deemed as uncooperative.

monitors to use information collected at different instants and

thus realizing a dynamic state observer that is valid for any

system in the considered class. Future work will investigate

issues related to communication and synchronization of the

monitors in a real experimental implementation.

VI. ACKNOWLEDGMENT

Authors wish to thank Claire Tomlin, Richard M. Murray,

and Domitilla Del Vecchio for useful discussion on state

estimation for hybrid systems, Joao P. Espanha and Mag-

nus Egerstedt for their useful comments on the problem

formulation as well as state estimation problem. This work

has been partially supported by the European Commission

with contract FP7-IST-2008-224428 “CHAT - Control of

Heterogeneous Automation Systems: Technologies for scala-

bility, reconfigurability and security”, and with contract num-

ber FP7-2007-2-224053 CONET, the “Cooperating Objects

Network of Excellence”. This work has been also partially

supported by Research Project 2007 funded by Cassa di

Risparmio di Livorno, Lucca e Pisa.

REFERENCES

[1] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” Auto-

matic Control, IEEE Transactions on, vol. 31, no. 9, pp. 803–812,
1986.

[2] D. Bertsekas and J. Tsitsiklis, “A survey of some aspects of parallel
and distributed iterative algorithms,” 1989.

[3] C. P. Pfleeger and S. L. Pfleeger, Security in Computing. Prentice
Hall, 2004.

[4] S. Bosworth, M. Kabay, and I. NetLibrary, Computer Security Hand-

book. John Wiley & Sons, 2002.
[5] J. Blum and A. Eskandarian, “The threat of intelligent collisions,” IT

Professional, vol. 6, no. 1, pp. 24–29, Jan.-Feb. 2004.
[6] A. Fagiolini, G. Valenti, L. Pallottino, G. Dini, and A. Bicchi,

“Decentralized Intrusion Detection For Secure Cooperative Multi-
Agent Systems,” in Proc. 46th IEEE Conf. on Decision and Control,
2007, pp. 1553–1558.

[7] F. Pasqualetti, A. Bicchi, and F. Bullo, “Distributed intrusion detection
for secure consensus computations,” in Proc. 46th IEEE Conf. on

Decision and Control, New Orleans, LA, USA, 12–14 December 2007,
pp. 5594–5599.

[8] M. Franceschelli, M. Egerstedt, and A. Giua, “Motion Probes for Fault
Detection and Recovery in Networked Control Systems,” American

Control Conference, Seattle, WA, June, 2008.
[9] M. Ji and M. Egerstedt, “Observability and estimation in distributed

sensor networks,” Proc. 46th IEEE Conf. on Decision and Control,
pp. 4221–4226, 2007.

[10] A. Fagiolini, M. Pellinacci, G. Valenti, G. Dini, and A. Bicchi,
“Consensus based Distributed Intrusion Detection for Multi Robot
Systems,” in Proc. IEEE International Conf. on Robotics and Automa-

tion, 2008, pp. 120–127.
[11] A. Fagiolini, G. Valenti, L. Pallottino, G. Dini, and A. Bicchi,

“Local Monitor Implementation for Decentralized Intrusion Detection
in Secure Multi Agent Systems,” in Proc. 3rd Annual IEEE Conf. on

Automation Science and Engineering, 2007, pp. 454–459.
[12] A. Fagiolini, A. Bicchi, G. Dini, and I. Savino, “Tolerating malicious

monitors in detecting misbehaving robots,” in IEEE International

Workshop on Safety, Security, and Rescue Robotics, Tohoku University
Aobayama Campus, Sendai, Japan, 2008.

[13] A. Girard and C. L. Guernic, “Zonotope/Hyperplane Intersection for
Hybrid Systems Reachability Analysis,” in Hybrid Systems: Compu-

tation and Control, Lecture Notes in Computer Science, 2008, pp.
215–228.

[14] A. Girard, “Reachability of Uncertain Linear Systems Using Zono-
topes,” in Hybrid Systems: Computation and Control, Lecture Notes

in Computer Science, 2005, pp. 291–305.
[15] T. Dang and O. Maler, “Reachability analysis via face lifting,” in

Hybrid Systems: Computation and Control, Lecture Notes in Computer

Science. Springer-Verlag, 1998, pp. 96–109.
[16] E. Asarin, T. Dang, and A. Girard, “Reachability Analysis of Nonlinear

Systems Using Conservative Approximation,” in Hybrid Systems:

Computation and Control, Lecture Notes in Computer Science, 2003,
pp. 20–35.

[17] P. Collins, “Continuity and Computability of Reachable Sets,” in
Theoretical Computer Science, vol. 341, 2005, pp. 162–195.

[18] D. D. Vecchio and R. Murray, Complexity Management in the State

Estimation of Multi–Agent Systems. John Wiley & Sons, Ltd, 2001.
[19] R. Vidal, R. Chiuso, S. Soatto, and S. Sastry, “Observability of linear

hybrid systems,” in In Hybrid Systems: Computation and Control,

LNCS. Springer Verlag, 2003, pp. 526–539.
[20] M. Babaali and M. Egerstedt, “Observability of switched linear

systems,” in Hybrid Systems: Computation and Control, Lecture Notes

in Computer Science. Springer Verlag, 2004, pp. 48–63.
[21] M. Babaali and G. J. Pappas, “Observability of switched linear systems

in continuous time,” in HSCC, 2005, pp. 103–117.
[22] A. D’Innocenzo, “Observability and Temporal Properties of Hy-

brid Systems: Analysis and Verification,” Ph.D Thesis, University
of L’Aquila, Department of Electrical Engineering and Computer
Science, 2006.

[23] L. Benvenuti, D. Bresolin, A. Casagrande, P. Collins, A. Ferrari,
E. Mazzi, T. Villa, and A. Sangiovanni-Vincentelli, “Reachability
Computation for Hybrid Systems with Ariadne,” in Proc. of the 17th

IFAC World Congress, 2008.
[24] J. Aubin and H. Frankowska, Set-Valued Analysis. Birkhäuser, 1990.
[25] R. Alur, S. Kannan, and S. L. Torre, “Polyhedral flows in hybrid

automata,” Form. Methods Syst. Des., vol. 24, no. 3, pp. 261–280,
2004.

[26] A. Bressan and B. Piccoli, Introduction to the Mathematical Theory

of Control. American Institute of Mathematical Sciences, Applied
Math Series Vol. 2, 2007.

2728

Authorized licensed use limited to: Univ degli Studi di Palermo - Univ of Palermo. Downloaded on February 07,2022 at 06:25:49 UTC from IEEE Xplore. Restrictions apply.

